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Abstract. We calculate the perturbative parts of the structure functions F c
2 and F c

L for a gluon target
having non-zero transverse momentum squared at order αs. The results of the double convolution (with
respect to the Bjorken variable xB and the transverse momentum) of the perturbative part and the uninte-
grated gluon densities are compared with the HERA experimental data for F c

2 . The contribution from the
F c

L structure function ranges in 10–30% of that of F c
2 at the kinematical range of the HERA experiments.

1 Introduction

Recently there have become available important new data
on the charm structure function (SF), F c

2 , of the pro-
ton from the H1 [1,4] and ZEUS [2,3] Collaborations at
HERA, which have probed the small-xB region down to
xB = 8 × 10−4 and xB = 2 × 10−4, respectively. At these
values of xB, the charm contribution to the total proton
SF, F2, is found to be around 25%, which is a consid-
erably larger fraction than that found by the European
Muon Collaboration at CERN [5] at larger xB, where it
was only ∼ 1% of F2. Extensive theoretical analyses in
recent years have generally served to confirm that the F c

2
data can be described through the perturbative genera-
tion of charm within QCD (see, for example, the review
in [6] and references therein).

In the framework of DGLAP dynamics [7,8] there are
two basic methods to study heavy flavor physics. One of
them [9] is based on the massless evolution of the parton
distributions and the other [10] on the boson–gluon fusion
process. There are also interpolating schemes (see [11] and
references therein). The present HERA data [1–4] for the
charm SF F c

2 are in good agreement with the predictions
from [10].

We note, however, that perhaps more relevant analyses
of the HERA data, where the xB values are quite small, are
those based on BFKL dynamics [12] (see discussions in the
review of [13] and references therein), because the leading
ln(1/xB) contributions are summed. The basic dynami-
cal quantity in the BFKL approach is the unintegrated
gluon distribution Φ(xB, k2

⊥) (fg is the (integrated) gluon
a e-mail: kotikov@sunse.jinr.ru
b e-mail: gonzalo@fpaxp1.usc.es

distribution multiplied by xB and k⊥ is the transverse mo-
mentum)

fg(xB, Q2) =
∫ Q2

dk2
⊥Φ(xB, k2

⊥)

(hereafter q2 = −Q2, k2 = −k2
⊥), (1)

which satisfies the BFKL equation.
We define the Bjorken variables

xB = Q2/(2pq) and x = Q2/(2kq) (2)

for lepton–hadron and lepton–parton scattering, respec-
tively, where pµ and kµ are the hadron and the gluon 4-
momenta, respectively, and qµ is the photon 4-momentum.

Notice that the integral is divergent at the lower limit
and this leads to the necessity to consider the difference
fg(xB, Q2) − fg(xB, Q2

0) with some non-zero Q2
0 (see the

discussions in Sect. 3), i.e.

fg(xB, Q2) = fg(xB, Q2
0) +

∫ Q2

Q2
0

dk2
⊥Φ(xB, k2

⊥). (3)

In our analysis below we will not use the Sudakov de-
composition, which is sometimes quite convenient in high-
energy calculations. However, it is useful to have relations
between our calculations and the results in which the Su-
dakov decomposition has been used. The corresponding
analysis will be done in the next section. Here we only
note that the property k2 = −k2

⊥ (see (1)) comes from
the fact that the Bjorken parton variables xB in the stan-
dard and in the Sudakov approaches coincide.
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Fig. 1a,b. The diagrams contributing to Tµν for a gluon tar-
get. They should be multiplied by a factor of 2 because of the
opposite direction of the fermion loop. The diagram a should
also be doubled because of the crossing symmetry

Then, in the BFKL approach the SFs F c
2,L(xB, Q2) are

driven at small xB by gluons and are related in the fol-
lowing way to the unintegrated distribution Φ(xB, k2

⊥):

F c
2,L(xB, Q2) (4)

=
∫ 1

xB

dx

x

∫
dk2

⊥Cg
2,L(x, Q2, m2

c , k
2
⊥)Φ(xB/x, k2

⊥),

The functions Cg
2,L(xB, Q2, m2

c , k
2
⊥) may be regarded as

the structure functions of the off-shell gluons with virtual-
ity k2

⊥ (hereafter we call them hard structure functions1).
They are described by the quark box (and crossed box)
diagram contribution to the photon–gluon interaction (see
Fig. 1).

The purpose of this article is to calculate these hard
SF Cg

2,L(xB, Q2, m2
c , k

2
⊥) and to analyze the experimental

data for F c
2 (xB, Q2) by applying (4) with different sets

of unintegrated gluon densities (see [18,17]) and to give
predictions for the longitudinal SF F c

L(xB, Q2).
It is instructive to note that the diagrams shown in

Fig. 1. are similar to those of the photon–photon scatter-
ing process. The corresponding QED contributions have
been calculated many years ago in [19] (see also the beau-
tiful review in [20]). Our results have been calculated in-
dependently and they are in full agreement with [19] (see
Appendix B). However, we hope that our formulas, which
are given in a more simple form, could be useful for other
authors.

The structure of this article is as follows: in Sect. 2 we
present the basic formalism of our approach with a brief
review of the calculational steps (based on [21]). The con-
nection of our analysis with the Sudakov-like approach is
also given. Later, we present the results for the two most
important polarization matrices for off-shell gluons into
the proton. In Sect. 3 and 4 we give the predictions for the
structure functions F c

2 and F c
L for the two cases of the un-

integrated gluon distribution functions (see [18,17]) used,
which are shortly reviewed. In Appendix A we show the
basic technique for the evaluation of the required Feyn-
man diagrams. Appendix B contains the review of QED

1 This notation reflects the fact that the structure functions
F c

2,L connect with the functions Cg
2,L in the same form as cross-

sections connect with hard ones (see [14–16] and the recent
review in [17])

results from [19,20]. In Appendix C we consider the limit-
ing cases, when the values of the quark mass or the gluon
momentum are equal to zero and also when the value of
the photon “mass” Q2 goes to zero.

2 Approach

The hadron part of the deep inelastic (DIS) spin-average
lepton–hadron cross-section can be represented in the
form2

Fµν = eµν(q)FL(xB, Q2) + dµν(q, p)F2(xB, Q2), (5)

where qµ and pµ are the photon and hadron momenta,

eµν(q) = gµν − qµqν

q2 and

dµν(q, p) = −
[
gµν + 2xB

(pµqν + pνqµ)
q2 + pµpν

4x2
B

q2

]
,

and the Fk(xB, Q2)(hereafter k = 2, L) are structure func-
tions.

The tensor Fµν is connected via the optical theorem
with the amplitude of elastic forward scattering of a pho-
ton on a hadron, Tµν(q, p), which may be decomposed in
invariant amplitudes Tk(xB, Q2) by analogy with (5).

Let us expand the invariant amplitudes in inverse pow-
ers of xB:

Tk =
∞∑

n=0

(
1

xB

)n

Tk,n. (6)

The coefficients Tk,n coincide (for even n) with the
moments Mk,n of the SF Fk:

Tk,n = Mk,n ≡
∫ 1

0
dzzn−2Fk(z, Q2). (7)

2.1 Evaluation of hard SF

We would like to note that the previous formalism can
be replicated at the parton level by replacing the hadron
momentum pµ by the gluon one kµ and the Bjorken vari-
able xB by the corresponding x. Then the hadron part of
the deep inelastic spin-average lepton–parton cross-section
can be represented in the form

F p
µν = eµν(q)F p

L(x, Q2) + dµν(q, k)F p
2 (x, Q2), (8)

where F p
k (x, Q2) are the structure functions of the lepton–

parton DIS.
As in our analysis we only consider gluons, the unin-

tegrated gluon distribution into the parton (i.e. into the
gluon) Φg(x, k2

⊥) should have the form

2 Hereafter we consider only the one-photon exchange ap-
proximation
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Φg(x, k2
⊥) = δ(1 − x)ϕ̂(k2

⊥),

where ϕ̂(k2
⊥) is a function of k2

⊥.
The parton SF F p

k (x, Q2) and the amplitudes T p
k (x, Q2)

at the parton level obey equations similar to (6) and (7)
with the replacement xB → x. Then they are connected
via the optical theorem:

T p
k (x, Q2) =

∞∑
n=0

(
1
x

)n ∫ 1

0
dzzn−2F p

k (z, Q2) (n = 2m).

(9)

Thus, the hard SF Cg
k(x, Q2, k2) of the parton SF

F p
k (x, Q2),

F p
2,L(x, Q2) (10)

=
∫

dk2
⊥

k2
⊥

Cg
2,L(y, Q2, m2

c , k
2
⊥)Θ(x0 − x)ϕ̂(k2

⊥),

can be obtained directly using the amplitudes T p
k (x, Q2)

at the parton level:

T p
2,L(x, Q2) =

∫
dk2

⊥
k2

⊥
C̃g

2,L(y, Q2, m2
c , k

2
⊥)ϕ̂(k2

⊥), (11)

in the following way:

C̃g
k(x, Q2, k2) (12)

=
∞∑

n=0

(
1
x

)n ∫ 1

0
dzzn−2Cg

k(z, Q2, k2)Θ(z0 − z),

where we have extracted a kinematical factor Θ(z0 − z).
As was already discussed we will work with the gluon

part only, keeping non-zero values of the quark masses
and the gluon virtuality. The corresponding Feynman di-
agrams are displayed on Fig. 1. The hard SF Cg

k(x, Q2, k2)
does not depend on the target type. So it can be calcu-
lated in photon–parton DIS and used later in the photon–
hadron reaction (see (4)).

2.2 Connection with the Sudakov-like approach

One of the basic ingredients in the Sudakov-like approach
is the introduction of an additional light-cone momentum
nµ with n2 = 0 and (np) = 1.

The gluon momentum kµ can be represented by

kµ = ξpµ +
k2 + k2

⊥
2ξ

nµ + kµ
T, (13)

with the following properties:

p2 = n2 = (pkT) = (nkT) = 0, (np) = 1, (14)

where the 4-vector kµ
T contains only the transverse part

of kµ, kT = (0, k⊥, 0), i.e. k2
T = −k2

⊥ and ξ = xB/x is the
fraction of the proton momentum carried by the gluon (see
(4)).

To study the relations between the “usual” approach
used here and the Sudakov-like one, it is convenient to
introduce the following parametrization for the vector nµ

(see [22]):

nµ =
2xB

Q2 (xBpµ + qµ) . (15)

It is easy to check that the properties in (14) are fulfilled.
Then, for the scalar product (kq) we have in the

Sudakov-like approach

(kq) = ξ(pq) +
k2 + k2

⊥
2ξ

(nq)

=
Q2

2x

[
1 − x2 k2 + k2

⊥
Q2

]
. (16)

If k2 = −k2
⊥, then it follows from (16) that

x =
Q2

2(kq)
,

which agrees with (2). Also from (13) it follows that

kµ = xBpµ + kµ
T, (17)

where xB is the fraction of the proton momentum carried
by the gluon.

2.3 Feynman gauge gluon polarization

As a first approximation we consider gluons having a po-
larization tensor (hereafter the indices α and β are con-
nected with gluons and µ and ν are connected with pho-
tons)3

P̂αβ = −gαβ . (18)

This polarization tensor corresponds to the case when glu-
ons do not interact. In some sense the case of polarization
is equal to the standard DIS suggestions about parton
properties, except for their off-shell property. The polar-
ization in (18) gives the main contribution to the polar-
ization tensor we are interested in (see below):

P̂αβ
BFKL =

kα
⊥kβ

⊥
k2

⊥
=

x2

−k2 pαpβ , (19)

which comes from the high-energy (or kT-) factorization
prescription [14,15,23]4.

3 In principle, we can use here more general cases of the
polarization tensor (for example, the one based on the Landau
or unitary gauge). The difference between these and (18) is
∼ kα and/or ∼ kβ and, hence, it leads to zero contributions
because the Feynman diagrams in Fig. 1 are gauge invariant

4 We would like to note that the BFKL polarization tensor
is a particular case of the so-called nonsense polarization of
the particles in t-channel making the main contributions for
the cross-sections in the s-channel at s → ∞ (see, for example,
[24] and references therein). The limit s → ∞ corresponds to
small values of the Bjorken variable xB, which is just the range
of our study
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Contracting the photon projectors (connected with
photon indices of diagrams in Fig. 1),

P̂ (1)
µν = −1

2
gµν and P̂ (2)

µν = 4x2 kµkν

Q2 ,

with the hadronic tensor Fµν , we obtain the following re-
lations at the parton level (i.e. for off-shell gluons having
momentum kµ):

β̃2Cg
2 (x) = K

[
f (1) +

3
2β̃2

f (2)
]

, (20)

β̃2Cg
L(x) = K

[
4bx2f (1) +

(1 + 2bx2)
β̃2

f (2)
]

= Kf (2) + 4bx2β̃2Cg
2 , (21)

where the normalization factor K = e2
cαs/(4π)x,

P (i)
µν Fµν = Kf (i), i = 1, 2,

and

β̃2 = 1 − 4bx2, b = −k2/Q2 ≡ k2
⊥/Q2 > 0, a = m2/Q2,

and αs is the QCD coupling constant. The kinematical
factor z0 which appears in (12) is

z0 =
1

1 + 4a + b
. (22)

Applying the projectors P̂
(i)
µν to the Feynman diagrams

displayed in Fig. 1, we obtain5 the following results for the
contributions to the expressions:

f (1) = −2β

×
[
1 − (1 − 2x(1 + b − 2a)[1 − x(1 + b + 2a)])f1

+ (2a − b)(1 − 2a)x2f2

]
, (23)

f (2) = 8xβ
[
(1 − (1 + b)x)

− 2x(bx(1 − (1 + b)x)(1 + b − 2a) + aβ̃2)f1

+ bx2(1 − (1 + b)x)(2a − b)f2

]
, (24)

where
β2 = 1 − 4ax

(1 − (1 + b)x)

and6

f1 =
1

β̃β
ln

1 + ββ̃

1 − ββ̃
, f2 =

−4
1 − β2β̃2

.

The important regimes, k2 = 0, m2 = 0 and Q2 → 0,
are considered in Appendix C. The Q2 = 0 limit is given
in Sect. 2.5.

5 The contributions of individual scalar components of the
diagrams of Fig. 1 (which come after evaluation of the traces
of the γ-matrices) are given in Appendix A

6 We use the variables as defined in [25]

2.4 BFKL-like gluon polarization

Now we take into account the BFKL gluon polarization
given in (19). As we already noted in the previous sub-
section, in these calculations we did not use the Sudakov
decomposition and, hence, the hadron momentum pα is
not so convenient to use as variable in our case. Thus, we
represent the projector P̂αβ

BFKL as a combination of projec-
tors constructed by the momenta kα and qα.

We can represent the tensor Fαβ in the general form:

Fαβ =Agαβ + Bqαqβ + Ckαkβ + D
(
kαqβ + qαkβ

)
, (25)

where A, B, C and D are some scalar functions of the
variables x, a and b.

From the gauge invariance of the vector current: kα

Fαβ = kβFαβ = 0 we have the following relations:

Ck2 = − [A + D(kq)] , B(kq) = −Dk2. (26)

If we apply the BFKL-like projector P̂αβ
BFKL and use

the light-cone properties given in (14), we get the simple
relation

P̂αβ
BFKLFαβ = D(kq). (27)

The standard projectors gαβ and qαqβ lead to the re-
lations

gαβFαβ = 3A + D
Q2

2x
β̃2, (28)

4
qαqβ

Q2 Fαβ =
β̃2

bx2

[
A + D

Q2

2x
β̃2
]

. (29)

From (28) and (29) we have

[(
(kq)2 − k2q2) gαβ + 3k2qαqβ

]
Fαβ = −D

Q6

4x3 β̃4, (30)

and the BFKL-like projector P̂αβ
BFKL can be represented

by

P̂αβ
BFKL = −1

2
1
β̃4

[
β̃2gαβ − 12bx2 qαqβ

Q2

]
. (31)

In the previous section we have already calculated the
contributions to the hard SF using the first term within
the brackets in the r.h.s. of (31). Repeating the above
calculations with the projector ∼ qαqβ , we obtain the total
contribution to the hard SF which can be represented as
the following shift in the results given in (20)–(24):

Cg
2 (x) → Cg

2,BFKL(x), Cg
L(x) → Cg

L,BFKL(x);

f (1) → f
(1)
BFKL =

1
β̃4

[
β̃2f (1) − 3bx2f̃ (1)

]
,

f (2) → f
(2)
BFKL =

1
β̃4

[
β̃2f (2) − 3bx2f̃ (2)

]
, (32)
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where

f̃ (1) = −β

[
1 − x(1 + b)

x

− 2(x(1 − x(1 + b))(1 + b − 2a) + aβ̃2)f1

− x(1 − x(1 + b))(1 − 2a)f2

]
, (33)

f̃ (2) = 4β(1 − (1 + b)x)2[2 − (1 + 2bx2)f1 − bx2f2]. (34)

As already has been noted in Sect. 2.3, for the impor-
tant regimes when k2 = 0, m2 = 0 and Q2 → 0, the
analyses are given in Appendix C.

Notice that our results in (33) and (34) should coincide
with the integral representations of [14,16] (at Q2 → 0
there is full agreement (see the following subsection) with
the formulae of [14,16] for the photoproduction of heavy
quarks). Our results in (33) and (34) should also agree
with those in [26] but a direct comparison is quite difficult
because the authors of [26] used a different (and quite
complicated) way to obtain their results and the structure
of their results is quite cumbersome (see Appendix A in
[26]). We have found numerical agreement in the case of
F2(xB, Q2) (see Sect. 3 and Fig. 6).

2.5 Q2 = 0 limit

We introduce the new variables ŝ, ρ and ∆ which are useful
in the limit Q2 → 0:

ŝ =
Q2

x
, ρ = 4ax ≡ 4m2

ŝ
, ∆ = bx ≡ −k2

Q2 x =
k2

⊥
ŝ

, (35)

and express our formulae above as functions of ρ and ∆
at asymptotical x values (i.e. small Q2).

When x = 0 we have got the following relations for the
intermediate functions:

β̃2 = 1, β2 = 1 − ρ

1 − ∆
≡ β̂2,

f1 =
1

β̂
ln

1 + β̂

1 − β̂
≡ L(β̂), f2 =

4β̂

ρ
(1 − ∆), (36)

f (1) = 2β̂

[(
1 + ρ − ρ2

2

)
L(β̂)

− (1 − ρ) +
(
2 + ρ − 2L(β̂)

)
∆

+ 2
(
L(β̂) − 1

)
∆2

]
, (37)

xf̃ (1) = −2β̂[2(1 − ∆) − ρL(β̂)], f (2) = xf̃ (2) = 0, (38)

and thus for the hard SF

Cg
L = 0, Cg

2 = Kf
(1)
BFKL, (39)

where

f
(1)
BFKL = 2β̂

[(
1 + ρ − ρ2

2

)
L(β̂)

− (1 + ρ) +
(
8 + ρ − (2 + 3ρ)L(β̂)

)
∆

+ 2
(
L(β̂) − 4

)
∆2

]
. (40)

We note that the results coincide exactly with those
from Catani–Ciafaloni–Hautmann work in [14,16] (see
(2.2) in [16]) in the case of photoproduction of heavy
quarks. The O(x) contribution in the Q2 → 0 limit is
given in Appendix C (see Sect. C.3).

3 Comparison with F c
2 experimental data

With the help of the results obtained in the previous sec-
tion we analyze the HERA data for SF F c

2 from the ZEUS
[3] and H1 [4] Collaborations.

Notice that in [14,16] the k2
⊥-integral has been evalu-

ated using the BFKL results for the Mellin transform of
the unintegrated gluon distribution and the Wilson coef-
ficient functions have been calculated analytically for the
full perturbative series at asymptotically small xB values.
Since we want to analyze the F c

2 data in a broader range
at small xB, we will use the parameterizations of the un-
integrated gluon distribution function (see the following
subsection).

3.1 Unintegrated gluon distribution

In this paper we consider four different parameterizations
for the unintegrated gluon distribution [18,17]. Two of
them [27,28] are presented below and for the others [29,
32] we only describe below some of the most relevant prop-
erties.

Firstly, we use the parameterization based on the nu-
merical solution of the BFKL evolution equation [27]
(Ryskin–Shabelski (RS) parameterization). The solution
has the following form [27]:

Φ(xB, k2)=
a1

a2 + a3 + a4

×
[
a2 + a3

Q2
0

k2 +
(

Q2
0

k2

)2

+ αxB +
β

ε + ln(1/xB)

]

× Cq

[
a5

a5 + xB

]1/2 [
1 − a6x

a7
B ln (k2/a8)

]

× (1 + a11xB)(1 − xB)a9+a10 ln(k2/a8), (41)

where

Cq =
{

1, if k2 < q2
0(xB),

q2
0(xB)/k2, if k2 > q2

0(xB). (42)

The parameters (a1−a11, α, β and ε) were found (see [27])
by minimization of the differences between the l.h.s. and
the r.h.s. of the BFKL-type equation for the unintegrated
gluon distribution Φ(xB, k2) with Q2

0 = 4 GeV2.



56 A.V. Kotikov et al.: The contribution of off-shell gluons to the structure functions F c
2 and F c

L

Secondly, we also use the results of a BFKL-like param-
eterization of the unintegrated gluon distribution Φ(xB,
k2

⊥, µ2), according to the J. Blumlein (JB) prescription
given in [28]. The proposed method relies upon a straight-
forward perturbative solution of the BFKL equation where
the collinear gluon density fg(xB, µ2) from the standard
GRV set [35] is used as the boundary condition in the inte-
gral form of (1). Technically, the unintegrated gluon den-
sity is calculated as a convolution of the collinear gluon
density fg(xB, µ2) with universal weight factor G(x, k2

⊥,
µ2) [28]:

Φ(xB, k2
⊥, µ2) =

∫ 1

xB

G(η, k2
⊥, µ2)fg

(
xB

η
, µ2
)

dη

η
. (43)

The universal function G(η, k2
⊥, µ2) can be represented

as a series (with some coefficients di)
∑

i=1 diĨi−1, where
Ĩi = Ii if k2

⊥ > µ2 and Ĩi = Ji if k2
⊥ < µ2, respectively,

and Ji and Ii are Bessel functions for the real and imag-
inary arguments. The series comes from the expansion
of the BFKL anomalous dimensions with respect to the
QCD coupling constant αs. The first term of the above
expansion explicitly describes the BFKL dynamics in the
double-logarithmic approximation:

G(η, k2
⊥, µ2) =

ᾱs

k⊥




J0(2
√

ᾱs ln(1/η) ln(µ2/k2
⊥)),

if k2
⊥ < µ2,

I0(2
√

ᾱs ln(1/η) ln(k2
⊥/µ2)),

if k2
⊥ > µ2,

(44)

where J0 and I0 are the standard for the Bessel functions
(of real and imaginary arguments, respectively), and ᾱs =
3αs/π. The parameter ᾱs is connected with the pomeron
trajectory intercept: ∆P = ᾱs4 ln 2 in the LO and ∆P =
ᾱs4 ln 2 − Nᾱ2

s in the NLO approximations. The number
N is large: N ∼ 18 [36–38] and some resummations are
needed. Indeed, resummation procedures proposed in the
last years lead to a value of ∆P ∼ 0.2–0.3 (see [39,40,17]
and references therein).

In our calculations with (43) we use the solution of the
LO BFKL equation and consider ∆P as a free parameter
varying from 0.166 to 0.53 with a central value ∆P =
0.357. We use this value of ∆P in our present calculations
with µ2 = Q2

0 = 1 and 4 GeV2.
The Kwiecinski–Martin–Stasto (KMS) parameteriza-

tion [29] is obtained from a unified BFKL and DGLAP
description of the SF F2 data and includes the so-called
consistence constraint [30]. The consistence constraint in-
troduces a large correction to the LO BFKL equation.
About 70% of the full NLO corrections to the BFKL ex-
ponent ∆P are effectively included in this constraint (see
[31]).

The last unintegrated gluon function used here is the
one proposed by Golec-Biernat and Wusthoff (GBW)
which takes into account saturation effects and has been

7 Close values for the parameter ∆P were obtained, rather,
in very different papers (see, for example, [41,42]), in the L3
experiment [43] and by the H1 and ZEUS Collaborations [44]

applied earlier in the analysis of the inclusive and diffrac-
tive ep-scattering data [32].

There are several other popular parameterizations (see,
for example, those of Kimber–Martin–Ryskin (KMR) [33]
and Jung–Salam (JS) [34]), which are not used in our
study mostly because of technical difficulties8. Note that
all above parameterizations give quite similar results ex-
cept, perhaps, the contributions from the small k2

⊥-range:
k2

⊥ ≤ 1 GeV2 (see [17] and references therein). Because
we use Q2

0 = 4 GeV2 in the study of SF F c
2,L, our results

depend very slightly on the small k2
⊥-range of the param-

eterizations. In the case of JB, GBW and KMS sets this
observation is supported below by our results and we ex-
pect that the application of the KMR and JS sets should
not strongly change our results.

3.2 Numerical results

For the calculation of the SF F c
2 we use (4) in the following

form:

F c
2 (xB, Q2) =

∫ 1

xB(1+4a)

dy

y
Cg

2,BFKL

(
xB

y
, Q2, 0

)
fg(y, Q2

0)

+
2∑

i=1

∫ y(i)
max

y
(i)
min

dy

y

∫ k
2(i)
⊥max

k
2(i)
⊥min

dk2
⊥

× Cg
2,BFKL

(
xB

y
, Q2, k2

⊥

)
Φ(y, k2

⊥, µ2), (45)

where Cg
2,BFKL(xB, Q2, k2

⊥) are given by (32).
The integration limits in (45) have the following values:

y
(1)
min = xB

(
1 + 4a +

Q2
0

Q2

)
, y(1)

max = 2xB(1 + 2a);

k
2(1)
⊥min = Q2

0, k
2(1)
⊥max =

(
y

xB
− (1 + 4a)

)
Q2;

y
(2)
min = 2xB(1 + 2a), y(2)

max = 1;

k
2(2)
⊥min = Q2

0, k
2(2)
⊥max = Q2. (46)

The ranges of integration correspond to the require-
ment of positive values in the arguments of the square
roots in (23), (24), (33) and (34) and also obey to the
kinematical restriction (z ≡ xB/y) ≤ z0 with z0 from
(22).

In Figs. 2 and 3 we show the SF F c
2 as a function of

xB for different values of Q2 in comparison with ZEUS [3]
and H1 [4] experimental data. For comparison we present
the results of the calculation with the different parameter-
izations for the unintegrated gluon distribution Φ(xB, k2

⊥,
Q2

0): the JB, GBW and KMS ones. The differences ob-
served between the curves 2, 3 and 4 are due to the dif-
ferent behavior of the unintegrated gluon distribution as
a function of xB and k⊥.

8 Note that the RS parameterization [27] is quite old. We use
it together with the JB set [28] (when the value µ2 = Q2

0 =
1 GeV2) only once (see Fig. 6) to prove the coincidence between
our off-mass-shell matrix elements and those from [26]
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Fig. 2. The structure function F c
2 (xB,

Q2) as a function of xB for differ-
ent values of Q2 compared to ZEUS
data [3]. Curves 1, 2, 3 and 4 corre-
spond to the SF obtained in the stan-
dard parton model with the GRV [35]
gluon density at the leading order ap-
proximation and to SF obtained in the
kT-factorization approach (at Q2

0 =
4 GeV2) with the JB [28], KMS [29] and
GBW [32] parameterizations of the un-
integrated gluon distribution

We see that at large Q2 (Q2 ≥ 10 GeV2) the F c
2 re-

sults obtained in the kT-factorization approach with KMS
and JB parameterizations are close to each other and are
higher than the SF obtained in the standard parton model
with the GRV gluon density at the LO approximation
(see curve 1) and has a more rapid growth in compar-
ison with the standard parton model results, especially
at Q2 ∼ 130 GeV2 [45]. Otherwise, the kT-factorization
approach with the GBW parameterization is very close to
pure QCD predictions: this should be so because the GBW
model has deviations from perturbative QCD only at quite
low Q2 values. At Q2 ≤ 10 GeV2 the predictions from per-
turbative QCD (in the GRV approach) and those based on
the kT-factorization approach are very similar9 and show

9 This fact is due to the quite large value of Q2
0 = 4 GeV2

chosen here

disagreement with the data below10 Q2 = 7 GeV2. Un-
fortunately the available experimental data do not permit
one yet to distinguish the kT-factorization effects from ef-
fects due to boundary conditions [27]. Note also that our
results for the KMS parameterization are in full agreement
with the original results of [33].

For completeness, in Figs. 4 and 5 we present the SF F c
2

as a function of Q2 for different values of x in comparison
with ZEUS [3] and H1 [4] experimental data.

10 A similar disagreement with the data at Q2 ≤ 2 GeV2 has
been observed for the complete structure function F2 (see, for
example, the discussion in [46] and references therein). We note
that the insertion of higher-twist corrections in the framework
of the usual perturbative QCD improves the agreement with
the data (see [47]) at quite low values of Q2
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Fig. 3. The structure function F c
2 (xB, Q2)

as a function of xB for different values of
Q2 compared to the H1 data [4]. Curves 1,
2, 3 and 4 are as in Fig. 2

Fig. 4. The structure function F c
2 (xB, Q2)

as a function of Q2 for different values of xB

compared to the ZEUS data [3]. Curves 1,
2, 3 and 4 are as in Fig. 2
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Fig. 5. The structure function F c
2 (xB, Q2)

as a function of Q2 for different values of
xB compared to the H1 data [4]. Curves 1,
2, 3 and 4 are as in Fig. 2

Fig. 6. The structure function F c
2 (xB, Q2) as a function of xB

at Q2 = 60 GeV2 compared to the ZEUS data [3]. Curves 2
and 3 correspond to the RS (at Q2

0 = 4 GeV2) [27] and JB
(at Q2

0 = 1 GeV2) [28] parameterizations obtained with our
off-mass-shell matrix and the ones from [26]

Figure 6 shows the structure function F c
2 at Q2 =

60 GeV2 obtained with two different gluon densities, i.e.
the RS (at Q2

0 = 4 GeV2) and JB (at Q2
0 = 1 GeV2) pa-

rameterizations. The difference between curves 2 and 3
are mainly due to the different Q2

0 value used (as we have
already shown in Figs. 2 and 3, the difference due to the
parameterizations is essentially smaller). So, from Fig. 6
we note that the difference between the kT-factorization
results and those from perturbative QCD increases when
we change the value of Q2

0 in (3) from 4 GeV2 to 1 GeV2

[45]. In addition, for each case presented in Fig. 6 we have
done the calculations with our off-mass-shell matrix el-

ements and those from [26]11. The predictions are very
similar and cannot be distinguished on curves 2 and 3.

4 Predictions for F c
L

To calculate the SF F c
L we have used (45) with the re-

placement of the hard SF Cg
2,BFKL by Cg

L,BFKL, which is
given by (32).

In Fig. 7 we show the predictions for F c
L obtained with

different unintegrated gluon distributions. The difference
between the results obtained in perturbative QCD and
from the kT-factorization approach is quite similar to the
F c

2 case discussed above.
The ratio Rc = F c

L/F c
2 is shown in Fig. 8. We see Rc ≈

0.1–0.3 in a wide region of Q2. The estimation of Rc is
very close to the results for the R = FL/(F2 − FL) ratio
(see [48–51]). We would like to note that these values of Rc

contradict the suggestion Rc = 0 proposed in [3,4]. The
effect of Rc on the corresponding differential cross-section
should be considered in the extraction of F c

2 from future
more precise measurements.

For the ratio Rc we found a quite flat xB-behavior
at low xB in the low Q2 region (see Fig. 8), where the
approaches based on perturbative QCD and on kT-factor-
ization give similar predictions (see Figs. 2–5 and 7). It
is in agreement with the corresponding behavior of the
ratio R = FL/(F2 − FL) (see [48]) at quite large values
of ∆P

12 (∆P > 0.2). The low xB increase of Rc at high
11 We would like to note that [26] contains several slips: the
propagators in (A.1) and the products (pq) in (A.4) and (A.5)
should be in the denominator, the indices 2 and L in (A.4) and
(A.5) should be transposed
12 At small values of ∆P , i.e. when x−∆P ∼ Const, the ratio
R tends to zero at xB → 0 (see [52])
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Fig. 7. The structure function F c
L(xB, Q2)

as a function of xB for different values of
Q2. Curves 1, 2, 3 and 4 are as in Fig. 2

Q2 disagrees with early calculations [48] in the framework
of perturbative QCD. This could be due to the small x
resummation, which is important at high Q2 (see Figs. 2–
5 and 7). We plan to study in the future this effect on R
in the framework of kT-factorization.

5 Conclusions

We have performed the calculation of the perturbative
parts for the structure functions F c

2 and F c
L for a gluon

target having non-zero momentum squared, in the pro-
cess of photon–gluon fusion. The results have quite a com-
pact form for both: the Feynman gauge and nonsense (or
BFKL-like) gluon polarizations.

We have applied the results in the framework of the
kT-factorization approach to the analysis of the present
data for the charm contribution to SF F2 (i.e. for SF F c

2 )
and we have given the predictions for F c

L. The analysis
has been performed with several parameterizations of the

unintegrated gluon distributions, the JB, GBW and KMS
ones, for comparison. We have found good agreement of
our results, obtained with these parameterizations of the
unintegrated gluon distributions at Q2

0 = 4 GeV2, with the
experimental F c

2 HERA data, except at low13 Q2 (Q2 ≤
7 GeV2). We have also obtained a quite large contribution
of the SF F c

L at low xB and high Q2 (Q2 ≥ 30 GeV2).
Note that similar results have been obtained also for the
RS parameterization [27] (see [53]).

We would like to note the good agreement between our
results for F c

2 and the ones obtained in [54] by Monte Carlo
studies. Moreover, we have also good agreement with fits
of the H1 and ZEUS data for F c

2 (see recent reviews in [55,
17] and references therein) based on perturbative QCD
calculations at NLO. But unlike these fits, our analysis
uses the universal unintegrated gluon distribution, which

13 It should be noted that the cross-section of inelastic cc̄ and
bb̄ pair photoproduction at HERA are described by the JB
parameterization at a smaller value of Q2

0 (Q2
0 = 1 GeV2) [18]
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Fig. 8. The ratio Rc = F c
L(xB, Q2)/F c

2
as a function of xB for different values
of Q2. Curves 1, 2, 3 and 4 are as in
Fig. 2

gives in the simplest way the main contribution to the
cross-section in the high-energy limit.

It could also be very useful to evaluate the complete
F2 itself and the derivatives of F2 with respect to the log-
arithms of 1/xB and Q2 with our expressions using the
unintegrated gluons. We are considering the presentation
of this work and also the predictions for FL in a forthcom-
ing article.

The consideration of the SF F2 in the framework of the
leading-twist approximation of perturbative QCD (i.e. for
“pure” perturbative QCD) leads to very good agreement
(see [46] and references therein) with HERA data at low
xB and Q2 ≥ 1.5 GeV2. The agreement improves at lower
Q2 when higher-twist terms are taken into account [47]. As
has been studied in [46,47], the SF F2 at low Q2 is sensitive
to the small-xB-behavior of the quark distributions. Thus,
the future analysis of F2 in a broader Q2-range should
require the incorporation of parameterizations for uninte-
grated quark densities, introduced recently (see [33] and
references therein).

The study of the complete SF FL should also be very
interesting. The structure function FL depends strongly
on the gluon distribution (see, for example, [56]), which
in turn is determined [57] by the derivative dF2/d lnQ2.
Thus, in the framework of perturbative QCD at low xB the
relation between FL, F2 and dF2/d lnQ2 could be violated
by non-perturbative contributions, which are expected to
be important in the FL case (see [58]). The application
of the present analysis to FL will give “non-pure” per-
turbative QCD predictions for the structure function that
should be compared with the data [49,51] and with the
“pure” perturbative results of [48].
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Appendix A

Here we present the contribution to the amplitude of the
DIS process from scalar diagrams14 in the elastic forward
scattering of a photon on a parton. In analogy to (6) one
can represent any one-loop diagram of the elastic forward
scattering

Dm1m2m3m4 ≡
∫

dDk1

(2π)D/2 (A.1)

× dm1(k1)dm2(k − k1)dm3(q + k1)dm4(q + k1 − k),

where dm(k) = (k2 − m2)−1, in the form15

Dm1m2m3m4 (A.2)

=
∞∑

n=0

(
1
x

)n

k̃(n)
∫ 1/(1+4a+b)

0
dzzn−1β(z)f̃m1m2m3m4(z).

For the application of (A.1) and (A.2) to F2 and FL hard
SF, only even n are needed. We choose k̃(n) so that k̃(2n)
= 1.

Below we rewrite (A.2) in the symbolic form

Dm1m2m3m4 −→ k̃(n), f̃m1m2m3m4(z). (A.3)

Then we can represent the needed formulae as follows.
(1) The loops:

D0110 −→ k̃(n) = 1, f̃0110(z) = 1,

D1001 −→ k̃(n) = (−1)n, f̃1001(z) = 1. (A.4)

(2) The triangles:

D1110 = D0111 −→ k̃(n) = 1,

f̃1110(z) = f̃0111(z) = −zf1(z),

D1011 = D1101 −→ k̃(n) = (−1)n,

f̃1011(z) = f̃1101(z) = −zf1(z). (A.5)

14 These diagrams appear after calculation of the traces of
the diagrams in Fig. 1
15 This method is very similar to that in [21,59] in the case
of zero quark masses. Usually the consideration of non-zero
masses into Feynman integrals strongly complicates the analy-
sis and requires the use of special techniques (see, for example,
[60]) to evaluate the diagrams. Here this is not the case, the
non-zero quark masses only modify the upper limit of the in-
tegral with respect to the Bjorken variable (see the r.h.s. of
(A.2))

(3) The boxes:

D2110 −→ k̃(n) = 1, f̃2110(z) = −4z2f2(z), (A.6)

D1111 −→ k̃(n) =
(1 + (−1)n)

2
, f̃1111(z) = 4z2f1(z).

(A.7)

We would like to note that the result for the second
box, D1111, is very similar to the ones for the triangles.
In the case of massless quarks this property has been ob-
served in [21,59].

Appendix B

We compare the results obtained in Sect. 2 and Ap-
pendix A with well-known formulae obtained in earlier
works (see [19,20]).

Following [20] let us consider the kinematics of virtual
γ∗γ∗ forward scattering. According to the optical theorem
(see Sect. 1) the quantity Fµναβ is the absorptive part of
the γ∗γ∗ forward amplitude, connected with the cross-sec-
tion in the usual way. (The expression of the amplitude in
terms of the electromagnetic currents is given in Sect. 1.)

In the expansion of Fµναβ into invariant functions one
should take into account Lorentz invariance, T -invariance
(symmetry in the substitution µν ↔ αβ) and gauge in-
variance as well, i.e.16

qµ
1 Fµναβ = qν

1Fµναβ = qα
2 Fµναβ = qβ

2 Fµναβ . (B.1)

The tensors in which Fµναβ is expanded can be con-
structed in terms of the vectors qµ

1 , qµ
2 and the tensor gµν .

In order to explicitly take into account gauge invariance,
it is convenient to use their linear combinations:

Qµ
1 =

√
−q2

1

X
[
qµ
2 − qµ

1
(q1q2)

q2
1

]
,

Qµ
2 =

√
−q2

2

X
[
qµ
1 − qµ

2
(q1q2)

q2
2

]
, (B.2)

Rµν = Rνµ = −gµν (B.3)
+ X −1[(q1q2)(q

µ
1 qν

2 + qν
1 qµ

2 ) − q2
1qµ

2 qν
2 − q2

2qµ
1 qν

1 ],

where

X = (q1q2)2 − q2
1 − q2

2 . (B.4)

The unit vectors Qµ
i are orthogonal to the vectors qµ

i
and the symmetrical tensor Rµν is orthogonal both to qµ

1
and qµ

2 , i.e. to Qµ
1 and Qµ

2 :

qµ
1 Qµ

1 = qµ
2 Qµ

2 = 0, qµ
i Rµν = Qµ

i Rµν = 0,

Q2
1 = Q2

1 = 1, RµνRµν = 2, RµνRνρ = −Rµρ. (B.5)

We note that Rµν is a metric tensor of a subspace
which is orthogonal to qµ

1 and qµ
2 . In the c.m.s. of the

16 Sometimes we replace q → q1 and k → q2 for the purpose
of keeping the symmetry 1 ↔ 2 in our formulae in the first
part of Appendix B
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photons, only two components of Rµν are different from 0
(Rxx = Ryy = 1).

The choice of independent tensors in which the ex-
pansion is carried out has a high degree of arbitrariness.
We make this choice so that these tensors are orthogonal
to each other, and the invariant functions have a simple
physical interpretation:

Fµναβ = RµαRνβFTT + RµαQν
2Qβ

2FTS + Qµ
1Qα

1 RνβFST

+ Qµ
1Qα

1 Qν
2Qβ

2FSS

+
1
2
[RµνRαβ + RµβRνα − RµαRνβ ]F τ

TT

− [RµνQα
1 Qβ

2 + RµβQα
1 Qν

2 + (µν ↔ αβ)]F τ
TS

+ [RµνRαβ − RµβRνα]F a
TT (B.6)

− [RµνQα
1 Qβ

2 − RµβQα
1 Qν

2 + (µν ↔ αβ)]F a
TS.

The dimensionless invariant functions Fab defined here
only depend on the invariants W 2 = (q1 + q2)2, q2

1 and q2
2 .

The first four functions are expressed through the cross-
sections σab (a, b ≡ S, T for scalar and transverse photons,
respectively). The amplitudes F τ

ab correspond to transi-
tions with spin-flip for each of the photons with total he-
licity conservation. The last two amplitudes are antisym-
metric.

We would like to represent the results of [19] in terms
of our functions, introduced in Sect. 2.

First of all, we return to the variables introduced in
Sect. 2. Then we have

X =
Q4

4x2 β̃2, Qµ
1 =

√
4bx2

Q2β̃2

[
qµ
2 +

1
2bx

qµ
1

]
,

Qµ
2 =

√
4bx2

Q2β̃2

[
qµ
1 +

1
2x

qµ
2

]
, (B.7)

The results of [19] have the form17:

β̃FTT = 4xβ
[
1 + 4(a − 1 − b)T + 12bT 2

−
{

1 − 8a2x2 + 2
(
2a − 1 − b

+ 2bx(1 − x(1 + b))
)
T + 24b2T 2

}
f1 + bx2f2

]
,

β̃FTS = −16x

× β
[
T − 2x{ax − b(1 + 2x(a − 1 − b))T − 6b2T 2}f1

+ bx2(6a − b + 6bT )Tf2

]
,

β̃FST = −16xβ

×
[
T − 2x{ax − (1 + x(2a − 1 − b))T − 6b2T 2}f1

+ x2(6a − b + 6bT )Tf2

]
,

17 The original results of [19] contain an additional factor
[−πα2/Q2]−1 in comparison with (B.8), that has to do with
the different normalization used in our article (see (1)) and in
[20]

β̃FSS = 64bxT 2β[2 − (1 + 2bx2)f1 − bx2f2],

β̃F τ
TT = 8xβ

×
[
2aT + (1 − a2)

x2

β̃2
+ 6bT 2 + x2

{
2(1 + a + b)

− b − 2b(2a − 1 − b)T − 12b2T 2
}

f1

]
,

β̃F τ
TS = β̃F τ

ST = 16b1/2xTβ

× [2x − 3T + x2{2a − 1 − b + 6bT}f1],

β̃F a
TT = 4β[x − 4T + {2T − x}f1 − bx3f2],

β̃F a
TS = β̃F a

ST = −16b3/2x2Tβ[2f1 − f2],

where

T =
x(1 − x(1 + b))

β̃2
.

Doing the needed projections on (B.6) we can express
the above functions as combinations of f (1), f (2), f̃ (1) and
f̃ (2) (see Sect. 2). We have

β̃2FSS = f (1), β̃2FST = β̃2f (1) +
1
2
f (2), (B.8)

β̃2FTS =
1
2
[f̃ (2) − f (2)], β̃2FTT =

1
2
[β̃2f̃ (1) − f (1)].

The hard SF calculated in Sect. 2 can be expressed as com-
binations of FAB (A, B = S, T).

For non-interacting gluons we can write

β̃2C2 = K[FSS + FST − 2(FTT + FTS)],

β̃2CL = K[FSS − 2FTS + 4bx2(FST − 2FTT)]; (B.9)

for the BFKL projector

β̃4C2,BFKL = K[FSS + FST + FTS + FTT],

β̃4CL,BFKL = K[FSS + FTS + 4bx2(FST + FTT)]. (B.10)

Appendix C

Here we consider the particular cases of the results ob-
tained in Sect. 2: k2 = 0, m2 = 0 and Q2 → 0 which are
relevant when making comparisons with others.

C.1 The case k2 = 0

When k2 = 0 we have

Cg
2 (x) = K

[
f (1) +

3
2
f (2)

]
and Cg

L(x) = Kf (2), (C.1)

with

f (1) = −2β
[
(1 − 2x(1 − x)(1 − 2a)) (C.2)

− (1 − 2x(1 − 2a) + 2x2(1 − 4a2))L(β)
]
,

f (2) = 8xβ[(1 − x) − 2xaL(β)], (C.3)
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where
β2 = 1 − 4ax

(1 − x)

and the function L(β) has been defined in (36).
Equations (C.1)–(C.3) coincide with the results of [61].
Indeed, we have

Cg
2 = K(−2)β

[
(1 − 4x(2 − a)(1 − x)) (C.4)

− (1 − 2x(1 − 2a) + 2x2(1 − 6a − 4a2))L(β)
]
,

Cg
L = K8xβ[(1 − x) − 2xaL(β)]. (C.5)

The consideration of the BFKL projector does not
change the results given above because the additional
terms (see (31)) are proportional to k2 and they are neg-
ligible. The expression in (C.5) also coincides with the
corresponding result in [16] (see (A17) and (A18)).

C.2 The case m2 = 0

When m2 = 0 the hard SF Cg
k(x) are defined through f (1)

and f (2) (see (20) and (21)) being in this case

f (1) = −2[2 − (1 − 2x(1 + b) + 2x2(1 + b)2)L(β̃)], (C.6)

f (2) = 8x(1 + b)(1 − (1 + b)x)[1 − 2bx2L(β̃)]. (C.7)

For the hard SF themselves, we have

β̃4Cg
2 = K(−2) (1 − x(1 + b))

×
[
2
(

1 − 2x(1 + b) +
x2(1 − b)2

1 − x(1 + b)

)

−
(
1 − x(1 + b) − 4x3b(1 + b)

+
x2(1 − b)2

1 − x(1 + b)

)
L(β̃)

]
, (C.8)

β̃4Cg
L = K8x (1 − x(1 + b))

×
[(

(1 + b) − 2bx

[
1 +

x2(1 − b)2

1 − x(1 + b)

])

+ bx
(
1 − 3x(1 + b) + 4x3b(1 + b)

+
x2(1 − b)2

1 − x(1 + b)

)
L(β̃)

]
. (C.9)

In the case of the BFKL projector, the hard SF Cg
k(x)

are defined by (C.1), (23) and (24) with the replacement
f (i) → f

(i)
BFKL as in (32). In (32) the expressions for f (i)

can be found in (C.6) and (C.7), while for f̃ (i) they are
given by

f̃ (1) = − (1 + b)(1 − x(1 + b))
bx

[1 − 2bx2L(β̃)]

= − 1
8bx2 f (2), (C.10)

f̃ (2) = 4(1 − x(1 + b))2[3 − (1 + 2bx2)L(β̃)], (C.11)

and thus

f
(1)
BFKL = Cg

2/K, (C.12)

β̃4f
(2)
BFKL = 8x(1 − x(1 + b))

×
[
1 + b − 18bx(1 − x(1 + b)) (C.13)

+ 2bx
(
3 − 4x(1 + b) + 6bx2(1 − x(1 + b))

)
L(β̃)

]
.

For the hard SF Cg
k,BFKL(x) we have the following re-

sults:

β̃8Cg
2,BFKL = K(−2) (1 − x(1 + b))

[
2

(
1 − 5x(1 + b)

+ x2(1 + 48b + b2)

+ x3(1 + b)(1 − 48b + b2) +
x4(1 − b)4

1 − x(1 + b)

)

−
(

1 − x(1 + b) + (1 − 30b + b2)x2

+ (1 − 50b + b2)x3(1 + b)

+72x4b2−56x5b2(1 + b) +
x4(1 − b)4

1 − x(1 + b)

)
L(β̃)

]
, (C.14)

β̃8Cg
L,BFKL = K8x (1 − x(1 + b))

×
[(

(1 + b) − 20bx + 24b(1 + b)x2

− 2b(1 + 12b + b2)x3

− 2(1 + b)b(1 − 12b + b2)x4 − 2bx
x4(1 − b)4

1 − x(1 + b)

)

+ bx

(
7 − 11x(1 + b)

+ (1 − 42b + b2)x2 + (1 − 30b + b2)(1 + b)x3

+ 24b2x4 − 8b2(1 + b)x5 +
x4(1 − b)4

1 − x(1 + b)

)
L(β̃)

]
. (C.15)

C.3 The case Q2 → 0

Using the definitions in (35), when x → 0 we have got the
following relations (at O(x)). For the intermediate func-
tions:

β̃2 = 1 − 4x∆, β2 = β̂2(1 − 4γx),

f1 = L(β̂) (1 + 2x(γ + ∆)) − 2x(γ + ∆)
(1 − ∆)

z
,

f2 = −2(1 − ∆)
z

[
1 − 2x

1 − ∆ − 2z

z
(γ + ∆)

]
, (C.16)

where

z =
ρ

2
, γ =

z/2
(1 − ∆)(1 − ∆ − 2z)

;
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for the basic functions:

f (1) = −2β̂

[
1 − 2(1 − ∆)(∆ − z)

− (1 − 2(1 − ∆)∆ + 2(1 − z)z)L(β̂)

+ 2x

{
1 − ∆

z
(∆ + (∆ − z)(1 − 2z∆))

− 1 − ∆ − z

z
γ (C.17)

+ (1 − ∆[3 − 2(1 − ∆)∆ + 2(1 − z)z])L(β̂)

}]
,

f (2) = 8xβ̂

[
(1 − ∆)

(
1 − 2

∆(1 − ∆)
z

(z − ∆)
)

− (2∆2(1 − ∆) + z(1 − 2∆(1 − ∆)))L(β̂)

]
,

xf̃ (1) = −β̂
[
{(1 − ∆) − x(3 − 6∆ + 4∆2)}

− {z + 2x(∆(1 − ∆) − z)}L(β̂)
]
,

xf̃ (2) = 4xβ̂(1 − ∆)2[2 − L(β̂)], (C.18)

and thus

f
(1)
BFKL = f (1) + 4β̂∆

[
3(1 − ∆ − zL(β̂))

− x
{

11 − 46∆ + 40∆2 + 4z(1 − ∆) (C.19)

− 2[1 − 5(1 − ∆)∆ + z(5 − 2z − 12∆)]
}

L(β̂)
]
,

f
(2)
BFKL = f (2) − 48xβ̂∆(1 − ∆)[2 − L(β̂)]. (C.20)

Similarly to (C.18), the hard SF in (39) and the func-
tions f

(1)
BFKL in (40) have the additional terms proportional

to x. We have

Cg
2/K = f (1) + 4xβ̂

[
6
∆2(1 − ∆)2

z
+ 3

− ∆(11 − 16∆ + 10∆2 + 4z(1 − ∆))
+ {2∆[1 − 5(1 − ∆)∆ + z(5 − 2z − 3∆)] − 3z}

× L(β̂)

]
, (C.21)

Cg
L/K = 8xβ̂

[
2
∆2(1 − ∆)2

z

+ 1 − 2∆(2 − 3∆ + 2∆2 + z(1 − ∆)) (C.22)

+ {∆[1 − 4(1 − ∆)∆ + 2z(2 − z − ∆)] − z}L(β̂)

]
,

Cg
2,BFKL/K = Cg

2/K + 4β̂∆
[
3(1 − ∆ − zL(β̂))

− x
{

47 − 130∆ + 88∆2 + 4z(1 − ∆) (C.23)

− 2[10 − 23∆ + 14∆2 + z(5 − 2z − 18∆)]L(β̂)
}]

,

Cg
L,BFKL/K = Cg

L/K − 48xβ̂∆[(1 − ∆)(2 − 3∆)

− [(1 − ∆)2 − z∆]L(β̂)]. (C.24)

References

1. H1 Collab., S. Aid et al., Z. Phys. C 72, 593 (1996); Nucl.
Phys. B 545, 21 (1999)

2. ZEUS Collab., J. Breitweg et al., Phys. Lett. B 407, 402
(1997)

3. ZEUS Collab., J. Breitweg et al., Eur. Phys. J. C 12, 35
(2000)

4. H1 Collab., S. Adloff et al., paper submitted to
ICHEP2000, Osaka, Japan, Abstract 984

5. EM Collab., J.J. Aubert et al., Nucl. Phys. B 213, 31
(1983); Phys. Lett. B 94, 96 (1980); B 110, 72 (1983)

6. A.M. Cooper-Sarkar, R.C.E. Devenish, A. De Roeck, Int.
J. Mod. Phys. A 13, 3385 (1998)

7. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438
(1972); 15, 675 (1972)

8. L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975); G.
Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977); Yu.L.
Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

9. B.A. Kniehl et al., Z. Phys. C 76, 689 (1997); J. Binnewies
et al., Z. Phys. C 76, 677 (1997); M. Cacciari et al., Phys.
Rev. D 55, 2736, 7134 (1997)

10. S. Frixione et al., Phys. Lett. B 348, 653 (1995); Nucl.
Phys. B 454, 3 (1995)

11. M.A.G. Aivazis et al., Phys. Rev. D 50, 3102 (1994)
12. L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E.A. Ku-

raev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 44 (1976)
443; 45, 199 (1977); Ya.Ya. Balitzki, L.N. Lipatov, Sov.
J. Nucl. Phys. 28, 822 (1978); L.N. Lipatov, Sov. Phys.
JETP 63, 904 (1986)

13. J. Kwiecinski, Acta Phys. Polon. B 27, 3455 (1996)
14. S. Catani, M. Ciafaloni, F. Hautmann, Phys. Lett. B 242,

97 (1990); Nucl. Phys. B 366, 135 (1991)
15. J.C. Collins, R.K. Ellis, Nucl. Phys. B 360, 3 (1991)
16. S. Catani, M. Ciafaloni, F. Hautmann, preprint CERN -

TH.6398/92, in Proceeding of the Workshop on Physics at
HERA (Hamburg, 1991), v.2, p. 690; S. Catani, preprint
DFF 254-7-96 (hep-ph/9608310)

17. Bo Andersson et al., hep-ph/0204115
18. A.V. Lipatov, N.P. Zotov, Mod. Phys. Lett. A 15, 695

(2000); A.V. Lipatov, V.A. Saleev, N.P. Zotov, Mod. Phys.
Lett. A 15, 1727 (2000)

19. V.N. Baier, V.S. Fadin, V.A. Khose, Zh. Eksp.Teor. Fiz.
50, 156 (1966) [Sov. J. JETP 23, 104 (1966)]; V.N. Baier,
V.M. Katkov, V.S. Fadin, Relativistic electron radiation
(Atomizdat, Moscow 1973) (in Russian); V.G. Zima, Yad.
Fiz. 16, 1051 (1972) [Sov. J. Nucl. Phys. 16, 580 (1973)]

20. V.M. Budnev, I.F. Ginsburg, G.V. Meledin, V.G. Serbo,
Phys. Rept. 15, 181 (1975)

21. D.I. Kazakov, A.V. Kotikov, Theor. Math. Phys. 73, 1264
(1987); Nucl. Phys. B 307, 721 (1988); E B 345, 299 (1990)

22. R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B
207, 1 (1982); B 212, 29 (1983)

23. E.M. Levin, M.G. Ryskin, Yu.M. Shabelskii, A.G. Shu-
vaev, Sov. J. Nucl. Phys. 53, 657 (1991)



66 A.V. Kotikov et al.: The contribution of off-shell gluons to the structure functions F c
2 and F c

L

24. E.A. Kuraev, L.N. Lipatov, Yad. Fiz. 16, 1060 (1972) [Sov.
J. Nucl. Phys. 16, 584 (1973)]

25. W. Vogelsang, Z. Phys. C 50, 275 (1991); A. Gabrieli, G.
Ridolfi, Phys. Lett. B 417, 369 (1998)

26. G. Bottazzi, G. Marchesini, G.P. Salam, M. Scorletti,
JHEP 9812, 011 (1998)

27. M.G. Ryskin, Yu.M. Shabelski, Z. Phys. C 61, 517 (1994);
C 66, 151 (1995)

28. J. Blumlein, preprint DESY 95-121 (hep-ph/9506403)
29. J. Kwiecinski, A.D. Martin, A.M. Stasto, Phys. Rev. D 56,

3991 (1997)
30. J. Kwiecinski, A.D. Martin, P.J. Sutton, Phys. Rev. D 52,

1445 (1995); Z. Phys. C 71, 585 (1996)
31. J. Kwiecinski, A.D. Martin, J.J. Outhwaite, Eur. Phys. J.

C 9, 611 (1999)
32. K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017

(1999); D 60, 014015, 114023 (1999)
33. M.A. Kimber, A.D. Martin, M.G. Ryskin, Phys. Rev. D

63, 114027 (2001)
34. H. Jung, G. Salam, Eur. Phys. J. C 19, 351 (2001); H.

Jung, hep-ph/9908497
35. M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)
36. V.N. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127 (1998);

M. Ciafaloni, G. Camici, Phys. Lett. B 430, 349 (1998)
37. A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 582, 19 (2000),

in Proceedings of the XXXV Winter School, Repino,
S’Peterburg, 2001 (hep-ph/0112346; hep-ph/0208220)

38. D.A. Ross, Phys. Lett. B 431, 161 (1998)
39. G. Salam. JHEP 9807, 019 (1998); Acta Phys. Polon. B

30, 3679 (1999)
40. S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov, G.B.

Pivovarov, JETP Lett. 70, 155 (1999)
41. N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 333, 250

(1994); Phys. Lett. B 327, 157 (1994); J. Kwiecinski, A.D.
Martin, P.J. Sutton, Z. Phys. C 71, 585 (1996); B. An-
dersson, G. Gustafson, H. Kharrazina, J. Samuelsson, Z.
Phys. C 71, 613 (1996); N.N. Nikolaev, V.R. Zoller, in Pro-
ceedings QCD-2000, Villefranche-sur-Mer, January 2000
(hep-ph/0001084); B.I. Ermolaev, M. Greco, S.I. Troyan,
Nucl. Phys. B 594, 71 (2001); A.B. Kaidalov, Talk pre-
sented at the XXXV Winter School, Repino, S’Peterburg,
February 2001 (hep-ph/0103011); A.V. Kotikov, G. Par-
ente, preprint US-FT/3-02 (hep-ph/0207276)

42. S.P. Baranov, N.P. Zotov, Phys. Lett. B 458, 389 (1999)
43. L3 Collaboration, M. Acciarri et al., Phys. Lett. B 453, 333

(1999); M. Kienzle, talk given at the International Sympo-
sium on Evolution Equations and Large Order Estimates
in QCD, Gatchina, Russia, May, 2000

44. H1 Collaboration, C. Adloff et al., Phys. Lett. B 520, 183
(2001); B. Surrow, talk given at the International Euro-
physics Conference on High Energy Physics, July 2001
(hep-ph/0201025)

45. A.V. Lipatov, N.P. Zotov, in Proceedings of the 8th Inter-
national Workshop on Deep Inelastic Scattering, DIS 2000
(2000) (World Scientific), p. 157

46. A.V. Kotikov, G. Parente, Nucl. Phys. B 549, 242 (1999);
Nucl. Phys. (Proc. Suppl.) 99A, 196 (2001); in Pro-
ceedings of the International Conference PQFT98 (1998),
Dubna (hep-ph/9810223); in Proceedings of the 8th Inter-
national Workshop on Deep Inelastic Scattering, DIS 2000
(2000), Liverpool, p. 198 (hep-ph/0006197)

47. A.V. Kotikov, G. Parente, in Proceedings International
Seminar Relativistic Nuclear Physics and Quantum Chro-
modynamics (2000), Dubna (hep-ph/0012299); in Pro-
ceedings of the 9th International Workshop on Deep Inelas-
tic Scattering, DIS 2001 (2001), Bologna (hep-ph/0106175)

48. A.V. Kotikov, JETP 80, 979 (1995); A.V. Kotikov, G. Par-
ente, in Proceedings International Workshop on Deep In-
elastic Scattering and Related Phenomena (1996), Rome,
p. 237 (hep-ph/9608409); Mod. Phys. Lett. A 12, 963
(1997); JETP 85, 17 (1997); hep-ph/9609439

49. H1 Collab., S. Aid et al., Phys. Lett. B 393, 452 (1997); H1
Collab., D. Eckstein, in Proceedings International Work-
shop on Deep Inelastic Scattering (2001), Bologna; H1
Collab., M. Klein, in Proceedings of the 9th International
Workshop on Deep Inelastic Scattering, DIS 2001 (2001),
Bologna

50. R.S. Thorne, Phys. Lett. B 418, 371 (1998)
51. CCFR/NuTeV Collab., U.K. Yang et al., in Proceed-

ings International Conference on High Energy Physics
(2000) Osaka, Japan (hep-ex/0010001); CCFR/NuTeV
Collab., A. Bodek, in Proceedings of the 9th International
Workshop on Deep Inelastic Scattering, DIS 2001 (2001),
Bologna (hep-ex/00105067)

52. S. Keller, M. Miramontes, G. Parente, J. Sánchez-Guillén,
O.A. Sampayo, Phys. Lett. B 270, 61 (1990); L.H. Orr,
W.J. Stirling, Phys. Rev.Lett. B 66, 1673 (1991); E.
Berger, R. Meng, Phys. Lett. B 304, 318 (1993); A.V.
Kotikov, JETP Lett. 59, 1 (1994); Phys. Lett. B 338, 349
(1994)

53. A.V. Kotikov, A.V. Lipatov, G. Parente, N.P. Zotov,
in Proceedings of the XVIth International Workshop
High Energy Physics and Quantum Field Theory (2001),
Moscow (hep-ph/0208195); in Proceedings of the Interna-
tional School Heavy Quark Physics (2002), Dubna

54. H. Jung, Nucl. Phys. (Proc. Suppl.) 79, 429 (1999)
55. G. Wolf, preprint DESY 01-058 (hep-ex/0105055); L.

Gladilin, I. Redoldo, to appear in The THERA Book (hep-
ph/0105126)

56. A.M. Cooper-Sarkar, G. Ingelman, R.G. Roberts, D.H.
Saxon, Z. Phys. C 39, 281 (1988); A.V. Kotikov, Phys.
Atom. Nucl. 57, 133 (1994); Phys. Rev. D 49, 5746 (1994)

57. K. Prytz, Phys. Lett. B 311, 286 (1993); A.V. Kotikov,
JETP Lett. 59, 667 (1994); A.V. Kotikov, G. Parente,
Phys. Lett. B 379, 195 (1996)

58. J. Bartels, K. Golec-Biernat, K. Peters, Eur. Phys. J. C
17, 121 (2000)

59. A.V. Kotikov, Theor. Math. Phys. 78, 134 (1989)
60. A.V. Kotikov, Phys. Lett. B 254, 158 (1991); B 259, 314

(1991); B 267, 123 (1991)
61. E. Witten, Nucl. Phys. B 104, 445 (1976); M. Gluck, E.

Reya, Phys. Lett. B 83, 98 (1979); F.M. Steffens, W. Mel-
nitchouk, A.W. Thomas, Eur. Phys. J. C 11, 673 (1999)

62. A.V. Kotikov, A.V. Lipatov, N.P. Zotov (hep-ph/0207226)

Note added in proof. During the completion of this
article the study of the complete structure function FL

discussed in Conclusion has been done in [62] in the frame-
work of kT -factorization.


